Despite the increasing limitations for unvaccinated people, in many European countries, there is still a non-negligible fraction of individuals who refuse to get vaccinated against SARS-CoV-2, undermining governmental efforts to eradicate the virus.
Within the PERISCOPE project, we studied the role of online social media in influencing individuals’ opinions about getting vaccinated by designing a large-scale collection of Twitter messages in three different languages — French, German, and Italian — and providing public access to the data collected. This work was implemented in collaboration with Observatory on Social Media, Indiana University, Bloomington, USA.
Focusing on the European context, we devised an open dataset called VaccinEU, that aims to help researchers to better understand the impact of online (mis)information about vaccines and design more accurate communication strategies to maximize vaccination coverage.
The dataset is openly accessible in a Dataverse repository and a GitHub repository.
Furthermore, a description has been published in a paper at ICWSM 2022 (open access), which can be cited as:
Di Giovanni, M., Pierri, F., Torres-Lugo, C., & Brambilla, M. (2022). VaccinEU: COVID-19 Vaccine Conversations on Twitter in French, German and Italian. Proceedings of the International AAAI Conference on Web and Social Media, 16(1), 1236-1244. https://ojs.aaai.org/index.php/ICWSM/article/view/19374
Frequent words and co-occurrences used by pro-vaccination and anti-vaccination communities.
In this study, we map the Twitter discourse around vaccinations in English along four years, in order to:
discover the volumes and trends of the conversation;
compare the discussion on Twitter with newspapers’ content; and
classify people as pro- or anti- vaccination and explore how their behavior is different.
Datasets. We collected four years of Twitter data (January 2016 – January 2020) about vaccination, before the advent of the Covid-19 pandemic, using three keywords: ’vaccine’, ’vaccination’, and ’immunization’, obtaining around 6.5 MLN tweets. The collection has been analyzed across multiple dimensions and aspects. General
Analysis. The analysis shows that the number of tweets related to the topic in- creased through the years, peaking in 2019. Among others, we identified the 2019 measles outbreak as one of the main reasons for the growth, given the correlation of the tweets volume with CDC (Centers for Disease Control and Prevention) data on measles cases in the United States in 2019 and with the high number of newspaper articles on the topic, which both significantly increased in 2019. Other demographic, space-time, and content analysis have been performed too.
Subjects. Besides the general data analysis, we considered a number of specific topics often addressed within the vaccine conversation, such as the flu vaccine, hpv, polio, and others. We identified the temporal trends and performed specific analysis related to these subjects, also in connection with the respective media coverage.
News Sources. We analyzed the news sources most cited in the tweets, which include Youtube, NaturalNews (which is generally considered as a biased and fake news website) and Facebook. Overall, among the most cited sources, 32% can be labeled as reliable and 25% as conspiracy/fake news sources. Furthermore 32% of the references point to social networks (including Youtube). This analysis shows how social media and non-reliable sources of information frequently drive vaccine-related conversation on Twitter.
User Stance. We applied stance analysis on the authors of the tweets, to determine the user’s orientation toward a given (pre-chosen) target of interest. Our initial content analysis revealed that a large amount of the content is of satirical or derisive nature, causing a number of classification techniques to perform poorly on the dataset. Given that other studies considered the presence of stance-indicative hashtags as an effective way to discover polarized tweets and users, a rule-based classification was applied, based on a selection of 100+ hashtags that allowed to automatically classify a tweet as pro-vaccination or vaccination-skeptic, obtain- ing a total of 250,000+ classified tweets over the 4 years.
Share of pro- and anti- vaccine discourse in time. Pro-vaccine tweet volumes appear to be larger than anti-vaccine tweets and to increase over time.
The words used by the two groups of users to discuss of vaccine-related topics are profoundly different, as are the sources of information they refer to. Anti-vaccine users cited mostly fake news websites and very few reliable sources, which are instead largely cited by pro-vaccine users. Social media (primarily Youtube) represent a large portion of linked content in both cases.
Additionally, we performed demographics (age, gender, ethnicity) and spatial analysis over the two categories of users with the aim of understanding the features of the two communities. Our analysis also shows to which extent the different states are polarized pro or against vaccination in the U.S. on Twitter.
Stance of US states towards vaccination.
A video presenting our research is available on YouTube:
This work has been presented at the IC2S2 conference.