Analysis of user behaviour and social media content for art and culture events

In our most recent study, we analysed the user behaviour and profile, as well as the textual and visual content posted on social media for art and culture events.

The corresponding paper has been presented at CD-MAKE 2017 in Reggio Calabria on August 31st, 2017.

Nowadays people share everything on online social networks, from daily life stories to the latest local and global news and events. In our paper, we address the specific problem of user behavioural profiling in the context of cultural and artistic events.

We propose a specific analysis pipeline that aims at examining the profile of online users, based on the textual content they published online. The pipeline covers the following aspects: data extraction and enrichment, topic modeling based on LDA, dimensionality reduction, user clustering, prediction of interest, content analysis including profiling of images and subjects.

Picture1We show our approach at work for the monitoring of participation to a large-scale artistic installation that collected more than 1.5 million visitors in just two weeks (namely The Floating Piers, by Christo and Jeanne-Claude). In the paper we report our findings and discuss the pros and cons of the work.

The full paper is published by Springer in the LNCS series in volume 10410, pages 219-236.

The slides used for the presentation are available on SlideShare:


Urbanscope: Digital Whispers from the Urban Landscape. TedX Talk Video

Together with the Urbanscope team, we gave a TedX talk on the topics and results of the project here at Politecnico di Milano. The talk was actually given by our junior researchers, as we wanted it to be a choral performance as opposed to the typical one-man show.

The message is that cities are not mere physical and organizational devices only: they are informational landscapes where places are shaped more by the streams of data and less by the traditional physical evidences. We devise tools and analysis for understanding these streams and the phenomena they represent, in order to understand better our cities.

Two layers coexist: a thick and dynamic layer of digital traces – the informational membrane – grows everyday on top of the material layer of the territory, the buildings and the infrastructures. The observation, the analysis and the representation of these two layers combined provides valuable insights on how the city is used and lived.

You can now find the video of the talk on the official TedX YouTube channel:

Urbanscope is a research laboratory where collection, organization, analysis, and visualization of cross domain geo-referenced data are experimented.
The research team is based at Politecnico di Milano and encompasses researchers with competencies in Computing Engineering, Communication and Information Design, Management Engineering, and Mathematics.

The aim of Urbanscope is to systematically produce compelling views on urban systems to foster understanding and decision making. Views are like new lenses of a macroscope: they are designed to support the recognition of specific patterns thus enabling new perspectives.

If you enjoyed the show, you can explore our beta application at:

and discover the other data science activities we are conducting at the Data Science Lab of Politecnico, DEIB.


Modeling, Modeling, Modeling: From Web to Enterprise to Crowd to Social

This is our perspective on the world: it’s all about modeling. 

So, why is it that model-driven engineering is not taking over the whole technological and social eco-system?

Let me make the case that it is.

A Comprehensive Guide Through the Italian Database Research Over the Last 25 YearsIn the occasion of the 25th edition of the Italian Symposium of Database Systems (SEBD 2017) we (Stefano Ceri and I) have been asked to write a retrospective on the last years of database and systems research from our perspective, published in a dedicated volume by Springer. After some brainstorming, we agreed that it all boils down to this: modeling, modeling, modeling.

Long time ago, in the past century, the International DB Research Community used to meet for assessing new research directions, starting the meetings with 2-minutes gong shows  to tell each one’s opinion and influencing follow-up discussion. Bruce Lindsay from IBM had just been quoted for his message:

There are 3 important things in data management: performance, performance, performance.

Stefano Ceri had a chance to speak out immediately after and to give a syntactically similar but semantically orthogonal message:

There are 3 important things in data management: modeling, modeling, modeling.

Data management is continuously evolving for serving the needs of an increasingly connected society. New challenges apply not only to systems and technology, but also to the models and abstractions for capturing new application requirements.

In our retrospective paper, we describe several models and abstractions which have been progressively designed to capture new forms of data-centered interactions in the last twenty five years – a period of huge changes due to the spreading of web-based applications and the increasingly relevant role of social interactions.

We initially focus on Web-based applications for individuals, then discuss applications among enterprises, and this is all about WebML and IFML; then we discuss how these applications may include rankings which are computed using services or using crowds, and this is related to our work on crowdsourcing (liquid query and crowdsearcher tool); we conclude with hints to a recent research discussing how social sources can be used for capturing emerging knowledge (the social knowledge extractor perspective and tooling).


All in all, modeling as a cognitive tool is all around us, and is growing in terms of potential impact thanks to formal cognification.

It’s also true that model-driven engineering is not necessarily the tool of choice for this to happen. Why? As technician, we always tend to blame the customer for not understanding our product. But maybe we should look into ourselves and the kind of tools (conceptual and technical) the MDE community is offering. I’m pretty sure we could find plenty of space for improvement.

Any idea on how to do this?


A Vision towards the Cognification of Model-driven Software Engineering

Jordi Cabot, Robert Clarisó, Marco Brambilla and Sébastien Gerard submitted a visionary paper on Cognifying Model-driven Software Development to the workshop GrandMDE (Grand Challenges in Modeling) co-located with STAF 2017 in Margburg (Germany) on July 17, 2017. The paper advocates for the cross-domain fertilization of disciplines such as machine learning and artificial intelligence, behavioural analytics, social studies, cognitive science, crowdsourcing and many more, in order to help model-driven software development.
But actually, what is cognification?

Cognification is the application of knowledge to boost the performance and impact of any process.

It is recognized as one of the 12 technological forces that will shape our future. We are flooded with data, ideas, people, activities, businesses, and goals. But this flooding could even be helpful.

The thesis of our paper is that cognification will also revolution in the way software is built. In particular, we discuss the opportunities and challenges of cognifying Model-Driven Software Engineering (MDSE or MDE) tasks.

MDE has seen limited adoption in the software development industry, probably because the perception from developers’ and managers’ perspective is that its benefits do not outweigh its costs.

We believe cognification could drastically improve the benefits and reduce the costs of adopting MDSE, and thus boost its adoption.

At the practical level, cognification comprises tools that go from artificial intelligence (machine learning, deep learning, as well as human cognitive capabilities, exploited through online activities, crowdsourcing, gamification and so on.

Opportunities (and challenges) for MDE

Here is a set of MDSE tasks and tools whose benefits can be especially boosted thanks to cognification.

  • A modeling bot playing the role of virtual assistant in the modeling tasks
  • A model inferencer able to deduce a common schema behind a set of unstructured data coming from the software process
  • A code generator able to learn the style and best practices of a company
  • A real-time model reviewer able to give continuous quality feedback
  • A morphing modeling tool, able to adapt its interface at run-time
  • A semantic reasoning platform able to map modeled concepts to existing ontologies
  • A data fusion engine that is able to perform semantic integration and impact analysis of design-time models with runtime data
  • A tool for collaboration between domain experts and modeling designers

A disclaimer

Obviously, we are aware that some research initiatives aiming at cognifying specific tasks in Software Engineering exist (including some activities of ours). But what we claim here is a change in magnitude of their coverage, integration, and impact in the short-term future.

If you want to get a more detailed description, you can go through the detailed post by Jordi Cabot that reports the whole content of the paper.

Instrumenting Continuous Knowledge Extraction, Sharing, and Benchmarking

This is a contribution in response to the Call for Linked Research for the workshop at ESWC 2017 entitled Enabling Decentralised Scholarly Communication.

Authors: Marco Brambilla, Emanuele Della Valle, Andrea Mauri, Riccardo Tommasini.

Affiliation: Politecnico di Milano, DEIB, Data Science Lab. Milano, Italy.

You can also read and download the full article in PDF
“Nanos gigantum humeris insidentes”
(Bernard of Chartres, 1115 ca.)


Science aims at  creating new knowledge upon the existing one, from the observation of physical phenomena, their modeling and empirical validation. This combines the well known motto “standing on the shoulders of giants” (attributed to Bernard of Chartres and subsequently rephrased by Isaac Newton) with the need of trying and validating new experiments.
However, knowledge in the world continuously evolves, at a pace that cannot be traced even by large crowdsourced bodies of knowledge such as Wikipedia. A large share of generated data are not currently analysed and consolidated into exploitable information and knowledge (Ackoff 1989). In particular, the process of ontological knowledge discovery tends to focus on the most popular items, those which are mostly quoted or referenced, and is less effective in discovering less popular items, belonging to the so-called long tail , i.e. the portion of the entity’s distribution having fewer occurrences (Brambilla 2016).
This becomes a challenge for practitioners, enterprises and scholars / researchers, which need to be up to date to innovation and emerging facts. The scientific community also need to make sure there is a structured and formal way to represent, store and access such knowledge, for instance as ontologies or linked data sources.
Our idea is to propose a vision towards a set of (possibly integrated) publicly available tools that can help scholars keeping the pace with the evolving knowledge. This implies the capability of integrating informal sources, such as social networks, blogs, and user-generated content in general. One can conjecture that somewhere, within the massive content shared by people online, any low-frequency, emerging concept or fact has left some traces. The challenge is to detect such traces, assess their relevance and trustworthiness, and transform them into formalized knowledge (Stieglitz 2014).An appropriate set of tools that can improve effectiveness of knowledge extraction, storage, analysis, publishing and experimental benchmarking could be extremely beneficial for the entire research community across fields and interests.

Our Vision towards Continuous Knowledge Extraction and Publishing

We foresee a paradigm where knowledge seeds can be planted, and subsequently grow, finally leading to the generation and collection of new knowledge, as depicted in the exemplary process shown below: knowledge seeding (through types, context variables, and example instances), growing (for instance by exploring social media), and harvesting for extracting concepts (instances and types).

We advocate for a set of tools that, when implemented and integrated, enable  the following perspective reality:

  • possibility of selecting any kind of source of raw data, independently of their format, type or  semantics (spanning quantitative data, textual content, multimedia content), covering both data streams or pull-based data sources;
  • possibility of applying different data cleaning and data analysis pipelines to the different sources, in order to increase data quality and abstraction / aggregation;
  • possibility of integrating the selected sources;
  • possibility of running homogeneous knowledge extraction processes of the integrated sources;
  • possibility of publishing the results of the analysis and semantic enrichment as new and further (richer) data sources and streams, in a coherent, standard and semantic way.

This enables generation of new sources which in turn can be used in subsequent knowledge extraction processes of the same kind. The results of this process must be available at any stage to be shared for building an open, integrated and continuously evolving knowledge for research, innovation, and dissemination purposes.

A Preliminary Feasibility Perspective

Whilst beneficial and powerful, the vision we propose is far from being achieved nowadays.  However, we are convinced that the vision is not out of reach in the mid term. To give a hint of this, we report here our experience with the research, design and implementation of a few tools that point in the proposed direction:

  1. Social Knowledge Extractor (SKE) is a publicly available tool for discovering emerging knowledge by extracting it from social content. Once instrumented by experts through very simple initialization, the tool is capable of finding emerging entities by means of a mixed syntactic-semantic method. The method uses seeds, i.e. prototypes of emerging entities provided by experts, for generating candidates; then, it associates candidates to feature vectors, built by using terms occurring in their social content, and then ranks the candidates by using their distance from the centroid of seeds, returning the top candidates as result. The tool can run continuously or with periodic iterations, using the results as new seeds. Our research on this has been published in (Brambilla et al., 2017), a simplified implementation is currently available online for demo purposes
    and the code is available as open-source under an Apache 2.0 license on GitHub at
  2. TripleWave is a tool for disseminating and exchanging RDF streams on the Web. At the purpose of  processing information streams in real-time and at Web scale, TripleWave integrates nicely with RDF Stream Processing (RSP) and Stream Reasoning (SR) as solutions to combine semantic technologies with stream and event processing techniques. In particular, it integrates with an existing ecosystem of solutions to query, reason and perform real-time processing over heterogeneous and distributed data streams. TripleWave can be fed with existing Web streams (e.g. Twitter and Wikipedia streams) or time-annotated RDF datasets (e.g. the Linked Sensor Data dataset) and it can be invoked through both pull- and push-based mechanisms, thus enabling RSP engines to automatically register and receive data from TripleWave. The tool has been described in (Mauri et al., 2016) and the code is available as open-source on GitHub at
  3. RSPlab enables efficient design and execution of reproducible experiments,  as well as sharing of the results. It integrates two existing RSP benchmarks (LSBench and CityBench) and two RSP engines (C-SPARQL engine and CQELS). It provides a programmatic environment to: deploy in the cloud RDF Streams and RSP engines; interact with them using TripleWave and RSP Services; continuously monitor their performances and collect statistics. RSPlab is released as open-source under an Apache 2.0 license, is currently under submission at ISWC – Resources Track and is available on GitHub


We believe that knowledge intaking by scholars is going to become more and more time consuming and expensive, due to the amount of knowledge that is being built and shared everyday. We envision a comprehensive approach based on integrated tools that allow data collection, cleaning, integration, analysis and semantic representation that can be run continuously  for keeping the formalized knowledge bases aligned with the evolution of knowledge, with limited cost and high recall on the facts and concepts that emerge or decay. These tools do not need to be implemented by the same vendor or provider; we instead advocate for opensource publishing of all the implementations, as well as for the definition of an agreed-upon integration platform that allows them all to colloquiate appropriately.

Outlook on Research Resource Sharing

As we envisioned an ecosystem that includes, but is not limited to, modules for extraction, sharing and benchmarking, two research questions require investigation in the immediate future:
First, how can we design and publish new resources for such an ecosystem? Do they exist already? It is important to understand what else is available out there.  Researchers commonly support their scientific studies with resources that can benefit the whole community, if released. The release process must comply with a scientific method that ensures repeatability and reproducibility. However, a standard agreed-upon methodology that guide this process does not exists yet.
Second, how should we combine these resources towards shared research workflows? To investigate this research question, we need a platform that enables researchers to deploy their resources and interact with the ecosystem. Therefore, we call for an open discussion about how this integration should be done.


  • Russell L. Ackoff. From data to wisdom. Journal of applied systems analysis 16, 3–9 (1989).

  • Marco Brambilla, Stefano Ceri, Florian Daniel, Emanuele Della Valle. On the quest for changing knowledge. In Proceedings of the Workshop on Data-Driven Innovation on the Web – DDI 16. ACM Press, 2016. Link

  • Stefan Stieglitz, Linh Dang-Xuan, Axel Bruns, Christoph Neuberger. Social Media Analytics. Business & Information Systems Engineering 6, 89–96 Springer Nature, 2014. Link

  • Marco Brambilla, Stefano Ceri, Emanuele Della Valle, Riccardo Volonterio, Felix Xavier Acero Salazar. Extracting Emerging Knowledge from Social Media. In Proceedings of the 26th International Conference on World Wide Web – WWW 17. ACM Press, 2017. Link

  • Andrea Mauri, Jean-Paul Calbimonte, Daniele Dell’Aglio, Marco Balduini, Marco Brambilla, Emanuele Della Valle, Karl Aberer. TripleWave: Spreading RDF Streams on the Web. 140–149 In Lecture Notes in Computer Science. Springer International Publishing, 2016. Link

(*) Note: the current version includes content in response to an online open review.

Extracting Emerging Knowledge from Social Media

Today I presented our full paper titled “Extracting Emerging Knowledge from Social Media” at the WWW 2017 conference.

The work is based on a rather obvious assumption, i.e., that knowledge in the world continuously evolves, and ontologies are largely incomplete for what concerns low-frequency data, belonging to the so-called long tail.

Socially produced content is an excellent source for discovering emerging knowledge: it is huge, and immediately reflects the relevant changes which hide emerging entities.

In the paper we propose a method and a tool for discovering emerging entities by extracting them from social media.

Once instrumented by experts through very simple initialization, the method is capable of finding emerging entities; we propose a mixed syntactic + semantic method. The method uses seeds, i.e. prototypes of emerging entities provided by experts, for generating candidates; then, it associates candidates to feature vectors, built by using terms occurring in their social content, and then ranks the candidates by using their distance from the centroid of seeds, returning the top candidates as result.

The method can be continuously or periodically iterated, using the results as new seeds.

The PDF of the full paper presented at WWW 2017 is available online (open access with Creative Common license).

You can also check out the slides of my presentation on Slideshare.

A demo version of the tool is available online for free use, thanks also to our partners Dandelion and Microsoft Azure.

You can TRY THE TOOL NOW if you want.

Social Media Behaviour during Live Events: the Milano Fashion Week #MFW case

Social media are getting more and more  important in the context of live events, such as fairs, exhibits, festivals, concerts, and so on,  as they play an essential role in communicating them to  fans, interest groups, and the general population. These kinds of events are geo-localized within a city or territory and are scheduled within a public calendar.

Together with the people in the Fashion in Process group of Politecnico di Milano, we studied the impact on social media of a specific scenario, the Milano Fashion Week (MFW), which is an important event in Milano for the whole fashion business.

We presented this work at the Location and the Web workshop co-located with the WWW 2017 Conference in Perth, Australia.

We focus our attention on the spreading of social content  in space, measuring the spreading of the event propagation in space. We build different clusters of fashion brands, we characterize several features of propagation in space and we correlate them to the popularity of the brand and temporal propagation.

We show that the clusters along space, time and popularity dimensions are loosely correlated, and therefore trying to  understand the dynamics of the events only based on popularity  aspects would not be appropriate.

The paper PDF is available as open access PDF online on the WWW 2017 Conference web site. You can download it here.

A subsequent paper on the temporal analysis of the same event “Temporal Analysis of Social Media Response to Live Events: The Milano Fashion Week”, focusing on Granger Causality and other measures, has been published at ICWE 2017 and is available in the proceedings by Springer.

The PowerPoint presentation is available on SlideShare.

Data Science for Good City Life

On March 10, 2017 we hosted a seminar by Daniele Quercia in the Como Campus of Politecnico di Milano, on the topic:

Good City Life

Daniele Quercia

Daniele Quercia leads the Social Dynamics group at Bell Labs in Cambridge
. He has been named one of Fortune magazine’s 2014 Data All-Stars, and spoke about “happy maps” at TED.  His research has been focusing in the area of urban informatics and received best paper awards from Ubicomp 2014 and from ICWSM 2015, and an honourable mention from ICWSM 2013. He was Research Scientist at Yahoo Labs, a Horizon senior researcher at the University of Cambridge, and Postdoctoral Associate at the department of Urban Studies and Planning at MIT. He received his PhD from UC London. His thesis was sponsored by Microsoft Research and was nominated for BCS Best British PhD dissertation in Computer Science.

His presentation will contrast the corporate smart-city rhetoric about efficiency, predictability, and security with a different perspective on the cities, which I think is very inspiring and visionary.

“You’ll get to work on time; no queue when you go shopping, and you are safe because of CCTV cameras around you”. Well, all these things make a city acceptable, but they don’t make a city great.

This slideshow requires JavaScript.

Daniele is launching – a global group of like-minded people who are passionate about building technologies whose focus is not necessarily to create a smart city but to give a good life to city dwellers. The future of the city is, first and foremost, about people, and those people are increasingly networked. We will see how a creative use of network-generated data can tackle hitherto unanswered research questions. Can we rethink existing mapping tools [happy-maps]? Is it possible to capture smellscapes of entire cities and celebrate good odors [smelly-maps]? And soundscapes [chatty-maps]?

The complete video of the seminar has been streamed live on youtube and is now available online at and embedded here:

The seminar was open to the public and hosted at the Polo Regionale di Como headquarters of Politecnico di Milano, located in Via Anzani 42, III floor, Como.

You can also download the Good City Life flyer.

When a Smart City gets Personal

When people talk about smart cities, the tendency is to think about them in a technology-oriented or sociology-oriented manner.

However, smart cities are the places where we leave and work everyday now.

Here is a very broad perspective (in Italian) about the experience of big data analysis and smart city instrumentation for the town of Como, in Italy: an experience on how phone calls, mobility data, social media, people counters can contribute to take and evaluate decisions.


You can read it on my Medium channel.

View story at

The role of Big Data in Banks

I was listening at R. Martin Chavez, Goldman Sachs deputy CFO just last month in Harvard at the ComputeFest 2017 event, more precisely, the SYMPOSIUM ON THE FUTURE OF COMPUTATION IN SCIENCE AND ENGINEERING on “Data, Dollars, and Algorithms: The Computational Economy” held in Harvard on Thursday, January 19, 2017.

His claim was that

Banks are essentially API providers.

The entire structure and infrastructure of Goldman Sachs is being restructured for that. His case is that you should not compare a bank with a shop or store, you should compare it with Google. Just imagine that every time you want to search on Google you need to get in touch (i.e., make a phone call or submit a request) to some Google employee, who at some points comes back to you with the result. Non sense, right?  Well, but this is what actually happens with banks. It was happening with consumer-oriented banks before online banking, and it’s still largely happening for business banks.

But this is going to change. Amount of data and speed and volume of financial transaction doesn’t allow that any more.

Banks are actually among the richest (not [just] in terms of money, but in data ownership). But they are also craving for further “less official” big data sources.

Juri Marcucci: Importance of Big Data for Central (National) Banks.

Today at the ISTAT National Big Data Committee meeting in Rome, Juri Marcucci from Bank of Italy discussed their research activity in integration of Google Trends information in their financial predictive analytics.

Google Trends provide insights of user interests in general, as the probability that a random user is going to search for a particular keyword (normalized and scaled, also with geographical detail down to city level).

Bank of Italy is using Google Trends data for complementing their prediction of unemployment rates in short and mid term. It’s definitely a big challenge, but preliminary results are promising in terms of confidence on the obtained models. More details are available in this paper.

Paolo Giudici from University of Pavia showed how one can correlate the risk of bank defaults with their exposition on Twitter:

Paolo Giudici: bank risk contagion based (also) on Twitter data.

Obviously, all this must take into account the bias of the sources and the quality of the data collected. This was pointed out also by Paolo Giudici from University of Pavia. Assessment of “trustability” of online sources is crucial. In their research, they defined the T-index on Twitter accounts in a very similar way academics define the h-index for relevance of publications, as reported in the photographed slide below.

Paolo Giudici: T-index describing the quality of Twitter authors in finance.

It’s very interesting to see how creative the use of (non-traditional, web based) big data is becoming, in very diverse fields, including very traditional ones like macroeconomy and finance.

And once again, I think the biggest challenges and opportunities come from the fusion of multiple data sources together: mobile phones, financial tracks, web searches, online news, social networks, and official statistics.

This is also the path that ISTAT (the official institute for Italian statistics) is pursuing. For instance, in the calculation of official national inflation rates, web scraping techniques (for ecommerce prices) upon more than 40.000 product prices are integrated in the process too.